# the globus alliance www.globus.org

# Harnessing Multicore Processors for High Speed Secure Transfer

Raj Kettimuthu Argonne National Laboratory



# Security

- Clear
  - No security at all
- Authentication
  - Verify the connection only, data is clear
- Integrity
  - Verify each packet, data is clear
  - High processing requirements
- Private
  - Encrypt all data
  - Very high processing requirements



# Security

- Security context
  - Includes a symmetric key
  - Associated with each TCP connection
  - Used for faster security processing
- Cipher Block Chaining
  - ◆ TLS/SSL, GSI, etc
  - Previously encrypted cipher text is used in the encryption of the current block
  - Cannot parallelize



- True security makes the CPU the bottleneck
  - Thus auth or clear are selected
  - there is no data integrity
- Post transfer checksums
  - Used to verify data once transfer completes
  - Should be considered part of transfer time
  - Less efficient (most re-open and read data)
  - cannot parallelize



#### Parallel Streams

- Multiple TCP streams between endpoints
  - Network optimization
  - Used to work around TCP backoff
- A security context with each stream
  - Can use to parallelize security processing
  - Each stream has own context
  - cipher block chain associated with that context



# Multiple Cores

- Up coming technologies
  - Quad core commodity
  - Future will bring .....
- Parallel processing power
  - No increase in memory
  - No increase in bus bandwidth
  - No increase in NIC bandwidth
- Increases the ratio of processing power to network speed

# the globus alliance www.globus.org

# Transfer Resources and Streams

- Memory needed is a function of BWDP
  - $BWDP_{total} = RTT * BW$
- Parallel streams do not increase the BDWP
  - Each stream shares an equal portion
  - BWDP<sub>stream</sub> = RTT \* (BW/|streams|)
- Required resources are not a function of | streams|
  - memory is function of BWDP
  - bus/disk/NIC speed is a function of transfer rate



# Full Encryption

- Perfect application of multiple cores
  - 1 stream per processor
  - Allows parallelism of security processing
  - Requires a core, but no more memory
  - Results show linear or close to linear increase on different dual-core architectures
  - Some interesting results on dual-core architectures with hyper threading



#### • Pentium Dual Core 1.1 GHz

| Security      | Single | Single | Pool | Pool |
|---------------|--------|--------|------|------|
| Level         | P1     | P2     | P1   | P2   |
| Clear         | 814    | 818    | 816  | 818  |
| Authenticated | 812    | 814    | 813  | 816  |
| Safe          | 169    | 178    | 164  | 285  |
| Private       | 76     | 78     | 75   | 138  |



#### • Itanium Dual Core 1.2 GHz

| Security      | Single | Single | Pool | Pool |
|---------------|--------|--------|------|------|
| Level         | P1     | P2     | P1   | P2   |
| Clear         | 903    | 905    | 903  | 906  |
| Authenticated | 899    | 899    | 899  | 899  |
| Safe          | 488    | 517    | 488  | 770  |
| Private       | 177    | 183    | 177  | 340  |



#### Opteron 64 bit Dual Core 2.4 GHz

| Security      | Single | Single | Pool | Pool |
|---------------|--------|--------|------|------|
| Level         | P1     | P2     | P1   | P2   |
| Clear         | 897    | 897    | 897  | 897  |
| Authenticated | 897    | 897    | 897  | 897  |
| Safe          | 254    | 268    | 254  | 471  |
| Private       | 100    | 101    | 100  | 196  |



Xeon dual core 2.8 GHz with hyper threading





Xeon dual core 2.8 GHz with hyper threading



Opteron dual core 1GHz with hyper threading



Opteron dual core 1GHz with hyper threading





- Experiments to see the effect of high thread count and high number of parallel streams
- |Stream| > min(|CPU|, |Thread|) does not fetch much benefit
- |Thread| > |CPU| does not fetch any benefit it seems to hurt the performance



















# **Stripes**

- Striping to extrapolate for higher number of cores
- 4 way striping with dual cores on each stripe
- Results show that 6 cores may be sufficient to get a throughput for fully encrypted transfers that is equivalent to that of a clear transfer with Gigabit NICs
  - Intel Xeon dual core 2.4 GHz
- 2 way stripe with 1 thread per stripe is better than 1 way stripe with 2 threads
  - Suspected cause is availability of 2 Gigabit NICs for 2 way stripe
  - Need to do more tests to verify this



# **Stripes**





# Stripes

• S1,C2



• S2,C2

